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ABSTRACT

The stability properties of six different adaptive schemes with

* respect to model order error are analyzed. Bounds on parameter identi-

fication and state errors are established. All adaptive schemes considered

are robust in the sense that the error is of order of the "speed ratio u"

between the modeled slow phenomena vs. the neglected fact. The dependence

of the error on the input signal is shown to be crucial. The boundsU
obtained indicate possibilities for reducing the error by a proper choice

of the input signal.

This work was supported in part by a grant from Ford Motor
Company; in part by the U.S. Air Force under Grant AFOSR-78-3633; in part
by the Joint Services Electronics Program under Contract N00014-79-C-0424;
and in part by the U.S. Department of Energy under Contract DE-ACOl-
80RA50255 with Dynamics Systems, Inc., Urbana, Illinois 61801,



r, .

r

1. INTRODUCTION

Global stability properties of model reference adaptive systems [l]-

[10] are guaranteed under the "matching assumption" that the model order is not

Ulower than the order of the unknown plant. Since this restrictive assumption is

likely to be violated in applications, it is important to determine the robust-

ness of adaptive schemes with respect to such modeling errors. Recently several

attempts have been made to formulate and analyze reduced order adaptive identi-

fiers [11]. The results of such studies depend on the characterization of the

model-plant mismatch.

In this paper we examine stability properties and performance of

; various types of identifiers and adaptive observers (i-[10] when the model-

plant mismatch is due to a fast ("parasitic") part of the plant, and the order

of the model is equal to the order of the slow ("dominant") part of the un-

known pluc. We express our results in terms of a "speed ratio" u of the slow

versus the fast phenomena. Scalar u is small and positive and U & 0 means that

the fast part of the plant reaches its steady-state instantaneously, that is

* the plant order reduces to that of its slow part. The fictitious "reduced-

order" plant i thus obtained when in the actual plant i > 0 is replaced by

-0.

This singular perturbation approach is a convenient parameterization

of the model-plant mismatch. In our formulation adaptive observers are designed

for the reduced order plants, but they are applied to the actual plants. In

Section 2 we derive a singularly perturbed state space realization of the plant

and give a statement of the problem. In Section 3 we analyze the stability

properties of an identification scheme [1], [2] employing a lower order model
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and we obtain bounds for parameter identification and state errors. In Section

S.4 we analyze the stability properties of reduced order minimal adaptive observers

[5]-[7] applied to actual plants and obtain bounds for parameter and observation

errors. The stability properties of a nonminimal adaptive observer [4], [8]

designed for a lower order plant and applied to the actual higher order plant are

analyzed (Section 5) and bounds are obtained on the parameter identification and

* output errors. In Section 6 similar results are obtained for the parametrized

adaptive observer [9]. A qualitative analysis based on these bounds is given in

Section 7 illustrated with compdter simulation results. Particularly important is

the sensitivity of the parameter identification error with respect to the excita-

tion input signal.

K

2. PROBLEM STATEMENT

Systems possessing * .. and fast parts can be represented in the

explicit singular perturbation form

iA11x + Al2x f + Blu (2.1)

if . A21x + A22xf + B2u (2.2)

y M C'X (2.3)

where x, xf are n and m vectors respectively, u is an r control vector and W is

a small positive parameter associated with the presence of "parasitic" elements,

such as time constants, masses, etc. [14]. The matrices AII,A12,A2 1,A22,B1 LandB 2

have appropriate dimensions.

Without altering the input-output characteristics of the system we

will use the transformation [13] -,, xf + Lx + Af B fu and analyze the equivalent

representation
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,c- Ax + Bu + HI (2.4)

f 9~ + uAfBf u (2.5)

y = c'x (2.6)

where

A- Al1 -A 12L. Af A2 2 + LA12, Bf - B2 + 4U,

B-B 1 -A Af H - A12

L satisfies the algebraic equation

A L-A +iiLAIL-PLAI -0 (2.7)
22 21  1 2 iA 1 n(27

Approximate expressions for L, A, Af and B are

L - A21 + 0() (2.8)

Al -A A22 .+0(0), A +0(), (2.9)| " ll -12 22 ' "A22
-1

Bj = B2 +O ( P), B - BI -A 2A2 2 B2 +0() (2.10)

Representation (2.4) -(2.6) containing is found to be convenient for getting

tighter error bounds and clarifying the dependence of the error on the characteris-

tics of the input.
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Dominant Part

-------- - ------ 1

Fig. 1. Representation of the plant based on (2.4) - (2.6).
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UThe part of the system described by (2.4) and (2.6) will be referred

to as the dominant part of the plant whereas (2.5) will be called the parasitic

part of the plant. Suppose that an adaptive scheme is designed for the n-orderU
dominant part assuming that there are no parasitics ie HT - 0. This scheme is

then applied to the actual plant with parasitics. The purpose of this paper is

to examine the robustness of the scheme with respect to the parasitic part of

the plant and to obtain bounds on the parameter and output or state errors.

Throughout the paper the following assumptions are made:

(i) A is stable and Af is asymptotically stable

(ii) The order of the dominant part of the plant is known

(iii) The tripple (A,B,C) is completely controllable and completely

observable

(v) The only available signals are u(t) and y(t)

* (vi) u(t) and a(t) are piecewise continuous bounded functions

of time.

It will be shown in the following sections that the stability of

several adaptive algorithms in the presence of parasitics is equivalent to the

stability of a linear time-varying equation with a parasitic input

i(t) - A n(t)Z(t) + H-9(t) (2.11)

where Z(t) is a composite error vector. It should be pointed out that (2.11) is

not input n to state Z(t) linear because A (t) depends on x which in turn de-n

pends on n. This dependence will be explored for each particular scheme. Our

approach is to first derive conditions under which the homogeneous part of

(2.11) is uniformly asymptotically stable (u.a.s.) for each n of interest.
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After these conditions are found, Lemma 1 is used to obtain bounds on Z(t).

Lemma 1: If the homogeneous part of (2.11) is u.a.s. then Z(t) is bounded.

A bound on the norm of Z(t) as t- is of order of u and is given by

m a
r, IZ(t)II4uy 1g It IA1 B f (2.12)

t-.=M 2 a 2

Proof: Since (2.11) is u.a.s. there exist positive numbers mI1 and m 2 such that

its transition matrix 0(t,T) satisfies

00(t,T) <me for all t>T and all r>0

Therefore from (2.11) we can write

-m 2t t -M 2 (t-T)_
iZ(t) m <rle IIz(O)U + t 0 21 e 1Hliin(t)HdT (2.13)fin~

* Since A is asymptotically stable and a(t) is bounded by assumption we set from
f

(2.5)

a t/4(t-T)on(t)o<ale On(o), + f ale 2 1Af1B ydr (2.14)

• . where y - sup I,',(r)Il and aVi a2 are positive constants. From (2.13) and (2.14)
t>T

we have

hIz(t)I<. 1 2 4..2. IIH-IIAfB 1 + oe ( z ( 1HII 0 (O)

in a2  f. 1 a1i 1 (M ai22 2 2 ( 2  2

(in2 - # (2 -)

- I

a?

and (2.12) follows as t- .

1 .. Y - I + ,, -,
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Bound (2.12) is convenient because it ,r' 1 be shown that factor
v iiy ..-- --IAB AHI remains the same for all adaptive schemes considered in this

S paper. The dependence of (2.12) on )k confirms that the schemes are robust because

Z-0 as -0. The actor - Ul B JIlJJHII is determined by the parasitics, m012 f

depends on the initial error Z(O) and m2 depends on the rate of convergence with-

out modeling error. The presence of parameter Y characterizing the input will be

shown to have a crucial effect on the parameter and state errors. In Sections

3, 4, 5 and 6 we establish u.a.s. of the homogeneous part of (2.11) and derive

specific forms of the bound (2.12) for six different adaptive schemes.

IS 3. I ENTIFICATION E1,t21

It is desired to identify the pair (A,B) in (2.4) by using an nth

order model and assuming that the state vector x is available for measurement.U
The presence of the parasitic input Hr is disregarded in the design of the

identification algorithm.

The nth order model for the identification of the pair (AB) is given

by (1], [2]

km K(x m -x) + A m(t)x+B m(t)u (3.1)

where K is a stable matrix and the adaptive laws for adjusting A m(t) and B (t)m m

are

- -Flex' (3.2)

-"2 eu' (3.3)

where A M (t)- A, 'f B m(t)- B and e x m- x are the parameter and state

errors and r'fI T>0' r2 2 >0.
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In the absence of parasitics (n-0) it is shown in [2] that if u(t)

is sufficiently rich for an nth order plant (ie the components of u(t) are
I n+l

linearly independent and each component contains at least --- distinct frequen-

cies) then e, *, T- 0 as t- -. The stability of the identification algorithm

in the presence of parasitics is equivalent to the stability of the following

system.

! Ke + x + 'u - Rr (3.5)

- = --ex' (3.6)

= -r2eu' (3.7)

where (3.5) is obtained by subtracting (2.4) from (3.1). To express (3.5)-(3.7)

as a linear time varying equation in the form of (2.11) we define Z(t)= [e',,',']'

* where - b14i,21,...'0 n'' F' 2 [ ...ITn] and i, 'i. are the ith rows of

0 and T respectively. Then we denote

Ix'" 0 u', 0

-r I
Alt x. (3.8)

where

(1) (2)

Yl Xl1 Yl Ul1

(1)x (2)
l x 2 2u 2 2

Y(1)X (2)
Ln n Lr r

and(i) is the jth row of F, 1- 1,2. To apply lemma 1 we now investigate
a 1i

whether
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Z(t) - A (t)Z(t) (3.9)

is u.a.s. or not. The stability of (3.9) can be easily established by choosing

the same Lyapunov function as in [1], [2] for the case without parasitics (rj" 0).

However for u.a.s. the components of the vector ux] have to be linearly indepen-

dent functions of time. A sufficient condition for the case n- 0 is that the

components of u(t) be linearly independent and each component contains at least
n+l- - distinct frequencies. In our case x depends on n which in turn depends on

a. Thus in some cases n might destroy the "richness" property of u. This can

be avoided by choosing u such that the components of the vector [x',u',n']' are

linearly' independent functions of time, for which a sufficient condition is that

the components of (u',Ci']' be linearly independent and each component of u be the

sum of sinusoids with at least distinct frequencies. This implies that|2

the components of [x',u'] are linearly independent functions of time and (3.9).is

u.a.s. Thus, lemma 1 immediately furnishes bound (3.4), since IHI 1.HI. We

summarize this result in theorem 1.

U Theorem 1: If u is sufficiently rich for the (n+m)-th order plant and the compo-

nents of (u',a']' are linearly independent then the identification algorithm

(3.1)-(3.3) is stable in the sense that the composite error Z(t) is bounded. The

bound is of order of p and is given by (2.12).

Remark 1: To guarantee the u.a.s. of (3.9) it is sufficient to make u sufficiently

rich for the highest suspected order of the actual plant. Although this is a

feasible approach in most applications, there is a considerable "overkill" in

requiring this richness. In fact it can be shown that the system (3.9) will

remain u.a.s. for almost all u which are sufficiently rich for the nth order

dominant part of the plant only. For example each component of u can contain any

n+l
2 distinct frequencies except for a particular combination for which the condi-

p tion of linear independence of x and u can be lost.
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4. MINMAL FORM ADAPTIVE OBSERVERS [7]

The plant (2.4)-(2.6) is assumed to be single input single output and

an nth order adaptive observer is designed to estimate the state vector x of

the dominant part of the plant and to identify the triple (A,B,C) or its equiva-

lent. The presence of the parasitic input H1f is disregarded during the design.

The stability of the adaptive observer operating on the real plant in the pres-

ence of the parasitic input is then analyzed. Two different types of minimal

adaptive observers are considered separately, Case 1 and Case 2.

Case 1. Adaptive observer [6]

Without loss of generality let us assume that the model of the

dominant part of the plant (2.4) is in the observable canonical form

-a x + Bu + H (4.1)

Il= Af n + uA;IBfu (4.2)

y = c'x = (1 0 .. 0]x = xI  (4.3)

The algorithm [6] for the nth order adaptive observer based on the

dominant part (4.1), (4.3) without the parasitics (fl-0 in (4.1)) is given by the

equations (4.4) through (4,11), below. The observer equation is

KZ + [k- a(t)]y + b(t)u + w + r (4.4)

y= c'z = z (4.5)

where w and r are auxiliary signals formed by the output error eI _ y -.v and

the components
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n-i n-i

- ds + ... + X d- n-2 U (4.6)
" d 2 n-2 + +d 2s +...+d

of the vectors v and q as follows:

0 0

v'IrA2v q 2q

w -e 1  VtrA r -- e1  qI (4.7)

v'rA v q 'MAnq

Matrices A are

n-J+l j -2

0 Zd -dj+ 1 . .- d 0 0

00 -d . .. d. -d n  0.. 0n-l-n
-dj ...- 1

0 0 0 0 -d -d n

A d 2  d. . d 1  0 0. 0 (4.8)
j

0 0 1 d2 .. d_ 2  -dj 0 0

00 0 . • 1 d2  d3  . . . J

and r - , > 0, M = M' > 0 while

K .. [ .. , d = d ] (4.9)S0 d

Id

are chosen such that c'(sr-K)- d is positive real. The adaptive laws for

updating the estimated parameters are given by
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'5 - -relu --a(t) (4.10)

-- Me q, S(t) (4.11)

where 0 A - a(t) and T A b(t)-B are the parameter errors.

, Case 2. Adaptive observer (5], (7].

-* The following "modal" canonical form is chosen for the dominant part

of the plant (2.4)

a I --- x + Bu + Hl (4.12)

Af + uAf B u (4.13)

y M C'x M x (4.14)

where h'- (1 1 ... 1], A is an (n-l)x(n-1) diagonal matrix with arbitrary but

known constant and negative diagonal elements -Ai (i- 2...n) and a, B are the

unknown vectors to be identified. It is shown in [5] that any completely observ-

able system can be represented in this "modal" canonical form. The structure

of the adaptive observer based on (4.12) with n- 0 is summarized in the equations

(4.15) through (4.20). The adaptive observer equation is

- Kz + (k-i(t))y + 6(t)u + w + r (4.15)

= c'z a z1  (4.16)

where w and r are auxiliary signals formed by the derivatives of the parameter

error components and the components

1 1
vi - s Xl, q = u (i-2,..n) (4.17)

of the vectors v &tid q as follows
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*0 0

v q
w , r (4.18)

Moreover K ais stable, the transfer function c'(sI-K) d -

A

is strictly positive real, and d - (1 0 ... 0)'. Note that the first components

of the vectors v and q are vi-xl, ql- u, respectively. The adaptive laws for

adjusting the parameters are

U- -relu - &(t) (4.19)

- - -Me1q - b(t) (4.20)

It is shown in Appendix I that the stability of the adaptive observers in case

1 and 2 in the presence of parasitics is equivalent to the stability of the

Ufollowing set of differential equations.

E Ke + d('v + 'q] - Hn (4.21)

€CI el (4.22)

- - I v (4.23)

-M - 1 q (4.24)

where K, d, v and q are defined differently in case 1 and 2

It is shown in [7] that if u(t) is sufficiently rich for an nth order

plant (ie it contains at least n-distinct frequencies) without parasitics

(Hn- 0) then the system (4.21)-(4.24) is u.a.s. To study the stability of the

algorithm with parasitics (Hn 0) we express (4.2l)-(4.24) in the form of (2.11)
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13 by introducing the composite error vector Z(t) - [c',*','']' where

K I du dq'
A-ru (), H- (4.26),J01 0 jH_

The stability of the homogeneous part of (2.11) can be shown using the same

- Lyapunov function as in the case without parasitics [7], [12] and it is not

influenced by the fact that A (t) depends on T1. However the proof of u.a.s. is

different.

Theorem 2: If u(t) is sufficiently rich for the (n+m)th order plant then the

homogeneous part of (2.11) is u.a.s. and the error vector Z(t) is bounded by

(2.12).

Proof: For u.a.s. of the homogeneous part of (2.11) a condition has to be

imposed on u(t). This is a consequence of the fact that the components of the

vector [v',q']' have to be linearly independent functions of time. This implies

P that the components of [x',ul' have to possess this independence property . It

can be shown that if u is sufficiently rich for the (n+m)-th plant, then the

components of (x',u,n'] ' are linearly independent functions of time. This

implies that the components of [x',ul' are linearly independent functions of

time hence the homogeneous part of (2.11) is u.a.s. Thus using lemma 1 (2.12)

follows.

Remark 2: As in Remark 1 in this it can also be shown that u.a.s. for the

homogeneous part of (2.11) can be achieved for almost all u which are sufficiently

rich for the nth order plant. That is if u contains at least n distinct

frequencies except for a particular combination for which the condition of linear

independence of the components of [x',u]' can be lost then the homogeneous part

of (2.11) is u.a.s.
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* 5. NON-MINIMAL ADAPTIVE OBSERVER [4], [7], [8]

A non-minimal state representation of the plant (2.4)-(2.6) is

p (see Appendix II and Fig. 2)

a a;b' h' y b 0 1

z s h A 0 0 Z8 0 0 0 At
S u + Hr + WX x tt~(O) (5.1)

0 00 A 0 W 3 h 0

Rs 0 00 A R s 0 T80

7- [1 0 .. 0] y

z
s (5.2)

W

R
LSi

u1Af + uAf Bful (5.3)

where h' Cl[ 1 ... 1] and A is as defined in Section 4.

T2HU 
r 

''

i+ ,

Fig.~~~_ 2.Nnmnm rpeett o h oiat ato h lat



The structure of the adaptive observer for (5.1), (5.2) in the absence of

parasitics (ie n- 0, R -0) is given in (4], (7] and (8] and the basic equations

L are reviewed below. The observer equations are:

4 yW&1 (tij+ aZ +61 (t)u +b'(t)W 5 - 1 (-wy)

Z s -Ai + hy (5.5)

- W -AW 3+ hu (5.6)

where y(O) -0, Z (0) - 0, (0) -0. The adaptive laws for adjusting the un-

known parameters are given by:

*--re Iv (5.7)

T- -Me ip (5.8)

where p (il (t)-a)1 (i(t)-a S)1], IF ! (6(t)-b 1), (6(t)-b s)'] and

v - [y,Z'I', p = (u,W']'. The stability of the non-minimal adaptive observer

Odescribed by (5.4)-(5.8) in the presence of parasitics is equivalent to the

stability of

1 x e~ + dtv'O + q'*I'] - h'RS h' , (O)(59

-re 1v (5.10)

where (5.9) is obtained by substracting (5.4) from (5.2).

Theorem 3: If u(t) is sufficiently rich for the (n+m)th order plant then the

vector Z(t) - (e., ',VP]' is bounded, the bound is of order of u and is given

by
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lrn I Z(t) 1~ 4i U 1. IA-B ihilT HI -l(.2

VO mm n2 s (5 2 f .12)

Proof:. We express (5.9) through (5.11) in a compact form similar to (2.11)

,..zct) a A (t) Z (t) + ARRa(t) (5.13)-

where

A,- dv 4p

'A (t) -rv A - (5.14)
1 I 0

L MP I

and note that A (t) depends on n through v.
n

The stability of the homogeneous part of (5.13) is proved in [4], [7],

[8], [12] by choosing an appropriate Lyapunov function. However for u.a.s. the

input u(t) has to belong to a special class of inputs. When n- 0 it is shown in

[7] that a sufficient condition for u.a.s. of the homogeneous part of (5.13) is

that u has to be sufficiently "rich" for an nth order plant. Using the same

argument as in the proof of Theorem 2 it can be shown that if u is sufficiently

rich for the (n+m)th plant the u.a.s. of the homogeneous part of (5.13) is

assured. As in Lemma 1 u.a.s. of (5.13) implies that

-m 2t t -M2 (t-T)

Iz(t)I 4 o 1e 
2 Z(O)I + Iom1e  IARIURs(r)Id? (5.15)

From (5.1) for some positive constants ' 2 we have

AR (t) 11 t ot e IT HIIIrl (T)11d- (5.16)
s 0 1 s

from (2.4), (5.13) and (5.16)
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tUZ(O)I ~ 2 a 2 t2 ~figi I::i.~ ~ -t t -m 2 t )a -f S~. ._
( 2 - iti I ARI fIR (0)' - - 'A 1T Hu( -

(2 2  f2 a2
&2° -(5.17)

' cA2t/I, -*'m2 t
.. +-t. IgIITsHI [Iri(0)i-y -' I]0. 2 /l -m m 22 t I /R2 1A f lS f

+ (( 2  1 ) (02f f I

1t ml i
+ jy~I Af1 Bf iT THIA I A-2c 2 m2 2 2

cn 1 ml I A7R

" As t-)w 1im HZ (t)I ,-y ml a' i lAfB~RIA .IAR1. Note that IAR - Ohl hence
M2 a 2 C2

(5.12).

It is pointed out that Remark 2 applies to this case as well.g
6. PARAMETRIZED OBSERVER [9]

It is shown in Appendix III that the plant equations, (4.1)-(4.3)

can be written as

'i(t) - FM(t) + [Iy, lul M(O) - 0 (6.1)

X(t) - M(t)p* + EXP(F t)X(O) + D(t) (6.2)

D(t) - FD(t) + Hn(t) D(O) - 0 (6.3)

n A n (t) "jA-AfB (6.4)

y - c'x - xI  (6.5)

where p* contains all the unknown parameters of the matrix A and vector B in

(4.1). The adaptive observer (9] for observing the state x and estimating p*

when D(t) - 0 is reviewed below. The observer equation is
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i(t) - M(t) (t) + EXP(F t)i(O) (6.6)

y(t) - c'x (6.7)

The form of the adaptive laws for updating the unknown vector p depend

on the particular criterion chosen for minimizing the output error eI 1 y - y.

For the first adaptation scheme the error criterion is

1 2 e (6.8)

and the adaptive law [91, £101 is given by

p(t) - -GM'(t)c e (6.9)

where G - GT > 0.I

For the second adaptive scheme the error criterion is

* 2 = [c'M(r)p(t) + c'EXP[FrI(O) - y(r)]eq'- dr (6.10)

where q is a positive constant, and the adaptive laws [9] are

p - -G[R(t)p(t) + r(t)] (6.11)

R(t) - -qR(t) + M'(t)cc'M(t) R(0) = 0 (6.12)

f(t) - -qr(t) + M'(t)c(c'EXP[Ft]x(0) - y(t)] r(0) 0 (6.13)

We now analyze the stability of each of the two adaptation schemes in the

presence of the parasitic input. We also derive bounds for the composite identi-

fication and observation error

Z(t) (6.14)
* P(t) - P* zlp(t)
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L In the first adaptation scheme the state error e and parameter

. error Ap satisfy

S- (t)G'(t)cce + [FM(t) + (Iy,Iu)]Ap + exp(Ft)Fe(O) - FD(t)-Hn(t)

(6.15)

-0 - -GM'(t)cc'e (6.16)

Combining (6.17) and (6.18) the equation for the composite error Z(t) is

Z(t) A (t)Z(t) + B (t) (6.17)n T
where

SM(t)GM'(t)cc' FM(t) + [Iy,Iu]

A n(t) - (6.18)
-GI' (t) cc' 0

and

e Ft Fe(O) - HT () FD(t)I

B (t) - (6.19)n 0

The following Theorem establishes the condition for the u.a.s. of

the homogeneous part of (6.17) and gives a bound for Z(t).

Theorem 4: If u(t) is sufficiently rich for an (n+m)th order plant then the

nth order adaptive observer given by (6.6), (6.7), (6.9) is;stable in the

presence of the parasitic part (6.4) of the plant (6.1)-(6.5) in the sense that

the composite error vector Z is bounded. A bound on Z as

t- is of order of , and is given by

lim lIzil < 1 -O i m l11H11 11A-B 1 (1t + 11F!!] (6.20)
a2 m 2 if f f 2

Proof: If u is sufficiently rich for the (n+m)th plant then the components of
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M'(t)c are linearly independent functions of time [9]. This implies that

.*i . there exist constants kl, k2 and T such that

0 < 1I 4 f+TM (T)cc'M(T)dT • K2 1 for all t > 0 (6.21)

is satisfied. Using the same proof as in Theorem 1 of [9.] it can be shown that

if (6.21) is satisfied then the homogeneous part of (6.17) is u.a.s. with the

rate of convergence no less than m 2 where

K Imin X[G]
- 2 (6.22)(1+nK2 max X[G]]

Thus from (6.17)

fZ(t)l < m£ m2 Z(O)I + t 1 2 lB ()ldT (6.23)

10 1

-f2 t
OB (t)g<f 1 2 IIFe(O)H + 1HIIn(t)l + IFIID(t)l (6.24)

and ID(t)II < ftf e- 2  IHRH(T)lIdT (6.25)

From (6.23), (6.24), (6.25) and (3.4)

-f2t -m~

IIz (t)lI < ml z 2t HZ )1 + p lm l fm2  _ - 2)

-a2t/u -m 2t -m t

+ P2m2 -z ) 1 2 (6.26)
2 2 a2 ) p m 1  i22 m2(m2 _ )

where mi, f are positive constants, f <min 1X[F]1 and P are given by
2 mt IX Iad pp 2, p3 aegvnb

Il If ( 1 [FII E iII II II___0)__
P, f ffFe( O )lI +u-( - IIA'f I - -I f it Fi It(0)" (6.27)a 2  ff1 a2  f 2 (f -

f f f2 2

" fl FIIIIH Ir)(0I:,2 +  )L 1 IHI If n(0) 11 -a' IA- (112 " + :IHII ) (6.28)(2 1  f1  2 1 - 2 f f
2 2
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a 1 flUY -I |Af B IHI[I + L IF] (6.29)

p3  jCy [f ~ -fI
2 2

As t- (6.20) follows.

In the second adaptation scheme the state and parameter errors

satisfy

- [FM(t) + (Iy,Iu)- M(t)GR(t)]Ap-M(t)G ft'(T)CC'tFTe(0)9-q(t-T)dT
0

+ M(t)G ftM'( )cc'D( )Z-q(t-T)d- + zFt F(O) - FD(t) - Hn(t) (6.30)
0

and

Ap - -GR(t)Ap -G f M'(T)cc'£F e(O) '~-)dr+ G ftM'(T)cc'D(T) -~-)dT

0 (6.31)

respectively.

By defining the composite error Z as in (6.14) it can be easily

shown that the stability of the second adaptation scheme is equivalent to the

stability of

Z = A (t)Z + E(t) + C(t) + K(t)" (6.32)n

0[FFM(t) + (Iy,Iu)- M(t)GR(t)

where A (t) = j (6.33)

FtFe(0) -M(t)G fM'(T)cc'z FTe(0)Z-q(t-T)

E(t) F GftM'()CC'Z FTe0) -q t( t- ])  (6.34)

0
C(t) I(6.35)

[(
0

K(t) q-r (6.36)
G f tH ' (T)cc'D(-.) Z-~- dr

0
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Note that E(t) vanishes with an exponential rate not less than minf w2 .

The u.a.s. of the homogeneous part of (6.32) and a bound on the

composite error Z(t) are established by the following theorem.

Theorem 5: If the input u is sufficiently rich for the (n+m)th order plant

then the nth order adaptive observer specified by (6.6), (6.7) and (6.11)

through (6.13) is stable in the presence of the parasitic part of the plant.

The bound on Z(t) as t- is of order of P and is given by
3ml a - f f G[ 1 _ B)

urn1 AZt~i - ILfOH~+ Nl 1 IGI 1IBI)6lim H z(t)I 4 -- I "A 1 11" HI [ +-- 1 |F1 +Tf3 q (1
T a2~ f f f

2+ P (I - IA B I IG (l+- -BI)6+Uy--TAB fIH]] (6.37)
a 2 &2 f f + +a 2 2  ff

2£
Proof: Since u(t) is sufficiently rich for the (n+m)th order plant the

components of M'(t)c are linearly independent [9]. This condition guarantees

the existence of constants K and T such that

,t+,(r)CCM(T)d .>KI> 0 for all t> O (6.38)
t

In Theorem 3 of [9] it is shown that if (6.38) is satisfied then the

homogeneous part of (6.32) is exponentially stable with a rate of convergence

m2 m tin~q,62 ] where

2 = KZ-qT min X[G] (6.39)
2

Thus for some positive constants w , Sl, 1 GI, Z and nl it can be

shown that

Iz(t){l ml 2 e t11Z(0)I + m f z 2 [lE(t), + IC(7)l + IK(d)!l dr(6.40)

. -w2 t

lE(t)l < w z (6.41)
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-s12t CL I f1IC(t)I • s z + Uy 2 IA7B IIHI[l+ IFI] + IM(t)IIK(t)I (6.42)a 2 f f f2
t 2

IM(t)I <1x +2 [(1+2 I BI)S+uy a"2'2 11111 IBf (6.43)
f2 a,. j

IKt- < 62 l + P - IA IlBfIIHI [(1 -- IBI)6

fKr) 2 1 Y- a 2 q +22

a' 2l " (6.44)

a 2 2 f

Then from (6.40) through (6.44)

- m aL f f2

Z(t)I 4 nZ 2  + 1-LIABfI a  I F1 + I GO 1 IBI)6
m 22f 2 f 2 q

3~I~3 1 11 IABf 2 (6.45)+ -l . i IAf B fHIIII) + -- ((1+-2 UBII)6+p-i -- 1 I f (.5
f2a 2  a 2

where s - mintj_ 'f1 C-mi 22 ,f2], £2 min[- , 2,f2]

62 = min[ 2,q], n2 - min[s 2, 2,62 ],

52_ min I X[A]I and 6 -sup u(t) for all t > 0. As t- (6.45) reduces to (6.37).

Remark 3: In both first and second adaptation schemes u was required to be

sufficiently rich for an (n+m)th order plant in order for conditions (6.21) and

(6.38) to be satisfied. However, as it was pointed out in Remark 2, for almost

all u sufficiently rich for an nth order plant the results. obtained will still

be valid.

L



24

7. DISCUSSION

In all the error bounds derived in the preceeding sections the

*common factor is

.11)
IIY A11 f 1I HIhI (7. 1).

The most important terms appearing in (7.1) are ih, the "speed ratio" of slow

vs fast phenomena, and Y which is a characteristic of the input. The dependence

or the error bound on 11 shows that the adaptive schemes considered are robust

- with respect to the parasitics in the sense that as h -0 the error bound goes

to zero. We demonstrate the effect of )k and Y by digital simulation of the

adaptive observer (Section 4, Case t) for the plant.

-.5  1 0.9.45
x" Lo j + L jx+  Lju (7.2)

Il f - -4x f- 2u (7.3)

y - [1 O]x (7.4)

Using the transformation =x f +O.5u the plant state equations

become

:k -1 0 x + 2 u + 0. 7 (7.5)

- -4- + 0.5Pu (7.6)

y - [E 0 Ix (7.7)

The adaptive observer ror (7.5), (7.7) with ,7-0 is
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- 1 z + I y + u - e - 0

(7.8)
where 31 F4 ]

0 -3 14 0 5 0. :
A2  [ , r- M 78 and

0 75 7.8

the components of the signals v and q are generated by

02 3v2 + X = v1 42 = -3q2 + u =q, (7.9)

The adaptive laws for adjusting the parameters are taken as

SA A

a(t) - re1v, b(t) - -MeIq (7.10)

The dependence ot the error bound on 11 is illustrated in Figs. 3 and 4. For

-0.2 and input u-5sint +Ssin 2.5t that is Y-18.2, the observation error e

is relatively small. However the parameter errors are significant: 10.4% tor

;a (t) and 12% for b(t). Reduction of 11 by a factor 4 that is A 0.05 results

in a reduction of the parameter errors by approximately the same tactor as

shown in Fig. 4b, c. The observation error e2 is almost zero in this case

(Fig. 4a).

To examine the effect of Y - sup[i(t) I on the error bound the value

of P is kept the same as in Fig. 4 but the input is changed to u=-5sint+

+ 15sin 2.5t that is Y is increased to Y -42.5. The results obtained are

shown in Fig. 5. It is clear that the value of Y is crucial for the error bound.

Increasing Y by a tactor of 2.3 results in an increase of the parameter error

by a factor of about 10. Moreover the observation error although bounded, is

oscillatory and not close to zero.
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The above simulation results show that the choice ot the excitation

input signal is critical in adaptive schemes with modeling errors. The etfect

of the input on the error can be even more crucial than the effect of sh.

Rapidly varying inputs (high Y) will result into bad estimates of parameters

-and states. Inputs of this class excite the parasitic part of the plant

considerably and have adverse effects on the results of adaptive schemes with

modeling error. Caution is needed in selecting an input excitation signal.

Our results show that the richness condition, should be satisfied but with an in-

- put which has a low value of Y. Slowly varying inputs are appropriate as long

as they do not reduce the convergence rate considerably.

Convergence rate m with which Z(t) exponentially decays in Z-A,(t)Z,|

is sensitive with respect to Y only for very low values qf Y. Thus we can

improve the error bound by keeping Y as low as possible for m2 not to be

affected appreciably. From (7.1) it is clear that larger m2 reduces the error

3bound. However m2 depends on the input u and on the adaptive gains and, hence,

for low values of Y there is a trade-off between Y and m2 , that is m2 cannot

be improved through the choice of the input. Its improvement by the choice

of the adaptive gains can only be done by trial and error since in all the

adaptive schemes considered, except in the parametrized observer, m2 is not

explicitely related to the adaptive gains. In the case of the parametrized

adaptive observer the expression for m2 gives more information about the

dependence of the error bound on other quantities. For the first adaptationkl inX[G]

scheme -2 - k 1 m ax%[G]]2 In this case the best we can do to improve

m2 and consequently the error bound is to make axX(G] = min%[G]. The

dependence of m2 on the order n of the dominant part of the plant indicates
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j that the error bound will be higher for a higher order dominant part of the

plant. For the second adaptive scheme m2 nmin[q,82] where e2 -Ke'qTmin X[G].

In this case m2 can be increased arbitrarily by increasing G and choosing q

* I[ appropriately. However the bound for this scheme is proportional to 1IGI1 and

it is not clear whether an increase of m2 through G will reduce the error.

The term m1 in (7.1) indicates the dependence of the bound on the initial error

. vector Z(O). The factor -i A 1 1 in (7.1) depends on the characteristics of

the parasitic part and the term 11H11 is a measure of the coupling between the

*dominant and parasitic part of the plant. Apart from the common factor (7.1)

the bounds obtained for the parametrized adaptive observer are also functions

of the characteristics of the observer gain F. The bound for the second

scheme is more complicated due to the complexity of that scheme.

K
8. CONCLUSIONS

The results of the paper show that if the plant is stable, the adapta-

tive schemes considered remain bounded despite the reduction of the model order.

The bound on the observation and parameter error is of the order of the singular

K. perturbation parameter .,and is also a function of dhe characteristics of the

input, the initial parameter and state error and the convergence rate m2 , which

would be achieved if there were no modeling error. The dependence of the error

on the input characteristics is found to be crucial and the most desirable

excitation signals are those which are sufficiently rich, but have a low value

of Y - sup I(t) i. A trade off between Y and m2 should be made when selecting the input
t

sigti l. The input does not have to be sufficiently rich for the full order

plant. The results of the paper are valid for almost every u(t) sufficia- 1 y

rich for the nth order dominant part of the plant. Thus u(t) can contain as
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many frequencies as required to be rich for the n-order plant except for a

particular combination of frequencies for which the richness of u(t) is reduced

by the parasitic input T(t). Extensions of these results to model reference
adaptive control and other closed loop adaptive schemes is a topic for future

research.
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APPENDIX I

The stability of the adaptive observer in the presence of parasitics

* for Case 1 and 2 is equivalent to the stability of the following set ofA
differential equations

e-Ke + x+ Tu - Hn + w + r, e- c'e (1.1)

- -. re u .... (1.2)

IF -Me1q (1.3)

Proposition: For some vector signals v, q, w and r with v - G(p)x I, q - G(p)u,

w - w(O,u) and r = r(,q) the system (I.1) is input ([x 1u,n']')-output (e1 )

equivalent with the systeml.4 provided (c',K) is completely observable

• KE + d[('v + V'q] - Hn, e I c'e = eI  (1.4)

Proof: From (1.1), (1.4)

c'(pI-K)-l + Tu + w + r - d(o'v + 'q)] (1.5)

where 'p' is the d/dt operator. From (1.5) we have

n pn-i [ 1iXl1 + i u + w i + r i - d i Ov - d i q] - 0 (1.6)
i-i

where i denotes the ith element of the corresponding vector. (1.6) is satisfied

by choosing v, q, w and r as given in Case 1 and Case 2. By considering the two

equivalent systems (1.1), (1.2), (1.3) and (1.4), (1.2), (1.3) . itis obvious

that boundeness of [ ',.','']' will imply boundeness of [e',.',P].
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SAPPENDIX II

From (5.1) and (5.3)

Y(S) G(s) - G (s) + c'(sI-A)- su(s) p u(s)

where

G (s) = c'(sI-A)' B
p

is the transfer function of the plant when Hn = 0. Let

bs n- i n-2

G(s) s + b 2 s + ... + n
p n + 1 n-i + 2 +

where

a ala2 and B b1,b2,...,b'

" are the unknown parameter vectors.

nConsider a polynomial 7r (s+Xi) which is relatively prime to the

1=2
numerator as well as the denominator polynomials of G (s) and A # A for i,p i .

n
j-2,3,...,n). Dividing the numerator and denominator of G(s) by 7r (s+A )

i=2
and expanding them into partial fractions we have

b2  b c'adj(sI-A) H n(s)
b +- + .. + -- nu(s)

s+ 2  s+A Tr(s+X )

G(s) = 2 n + I2 a Ui)
a2  an 2 ns-a1- s+ 2  s-al -+ s+

Note that 2 n 2 *+n

-1 n-i n-2 n tl£ n t
c'ad(sl-A) -  n  ,...,] Z 2i
n n i-=2 s+\' i=2 s+ X.

il 2 ( s + i.) r 2(s+ .)
(11.2)

.2 + i
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U 1.1 can be written as

: !- 1 n [b u(s) + aiY s) + TiA (s)]. 1y(s) 1 [blu(s) + aY(S). + i~f s i (I.3

y 8s 1 J(~~)a1 ~) 2  s + X(11.3)

where

T- E til, t2 ,'***,tni]

II.3 is represented in a block diagram form in Figure 2. The block diagram of

Figure 2 contains (3n-2) integrators and is a nonminimal realization of the

dominant part of the plant.

The term h'exp(At)x(O) in Figure 2 is added so that Figure 2 is

equivalent to the corresponding figure of a minimum realization of II.3 including

initial conditions. Here x - .[x2,x3 ,...,x] and x is the state of the minimal

realization based-on 11.3.

The nonminimal state-space representation given by (6.1), (6.2) can

be easily obtained from Figure 2 by defining

. - [r 2 r 3 ,...,rI', ws = [w

,z - 2 ,z 3 ,...,zl' and T - (T,T .... ,T'
2 S S
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APPENDIX III

Equation (2.4) can be represented as

I im Fx + gy + Bu + fln (11.1)

,. where

-f 0 ... 0

-f 2 0 1 91
F 1 g =

[ (111.2)

-' -f 0 0 ... 0
Lgn

and g satisfies gc' A-F.

From III.1
FtxoFtT tFtT

4t j(t-r)[gy(r) + Bu()]dT + ft (t)Hn(T)d (111.3)
0 0 0

The first convolution integral can be reduced toK
ft zF(t-T) [iy(r), Iu(r)]dr- p* = M(t)p* (111.4)

0

where p*' = [g',B']. Thus (6.1)-(6.3) follows by taking

D(t) ft ZF(t') Hn(r)dr (111.5)
0
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